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ABSTRACT

A digital filter which has been designed to be limit cycle free may exhibit limit cycles at the implementation
stage. This is due to the inability to implement filter coefficients exactly in hardware when they are quantized
to satisfy available wordlength requirements. Given a digital filter which is limit cycle free under zero input
conditions, the work below presents an algorithm which finds a region in the coefficient space, about the nominal
filter coefficient values, wherein the filter remains limit cycle free. Furthermore the results of the algorithm will also
indicate the availability of other machine representable numbers for the coefficients that fall within this robustness
region. Hence one may even choose shorter wordlength registers for coefficient storage if the corresponding grid
falls within the constructed robustness region.
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1 INTRODUCTION

Over the years many papers have been published regarding limit cycle properties of digital filters15. Granular
limit cycles is the subject of many of these publications, in particular limit cycles due to zero or low input
conditions are addressed. This is especially critical since the occurrence of limit cycle oscillations at zero or low
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input conditions significantly impair the signal to noise ratio at the output. An extensive listing of limit cycle
behavior due to different arithmetic types is given in the reference.3

A filter designer will always assume the transfer function coefficients can be accurately represented, i.e assume
infinite wordlength, at the design stage. However at the implementation stage this system is represented with
suitable digital hardware in a finite wordlength environment. Therefore the designer has to suitably approxi-
mate the infinite wordlength coefficients with a machine representable number using the available wordlength.
This process will invariably introduce errors to the system since errors in coefficient representation introduces
perturbations in the poles and zeros of the transfer function which in turn manifests themselves as errors in the
frequency response.7 Appreciable differences between the implemented and the designed coefficients will lead to
a deviation of the frequency response from the nominal specifications. Ideaily we would like to have both systems
to have similar characteristics. Hence the knowledge of a robustness region would be the important link between
the designed system and the practically realizable system.

An alternate method of finding the robustness region around a nominal parameter set by constructing parallel
hyperplanes in the coefficient space is discussed in the reference.2 Methods which exactly construct this region
have been developed in8 in the context of parameter estimation problem. This involves a complicated and time
consuming procedure to converge to a realistic result. In contrast the algorithm to construct a robustness region
given below is more general as the filter is assumed to be in its state-space form and the development of this
region follows a methodical technique which is less time consuming and always converges to a result. Moreover,
to reduce the computational burden, several crucial and novel notions have been incorporated.

There are several motivating reasons for undertaking such a study, they are:

If an exhaustive search method is carried out to determine stability"2 of the digital system, the linear stability
region will be covered by a finite grid before the search algorithm is applied to grid points to determine stability.
Hence a robustness region about the nominal filter would conclude whether filters that were not captured by this
grid remain limit cycle free. It can also provide a suitable grid size a priori.

Once a robustness region about a nominal filter is available. By superimposing different grid sizes on this
region, one may choose different machine representable numbers that fall within the robustness region to determine
the shortest wordlength possible to represent the coefficient values and still preserve the system characteristics.
This will enable the hardware designer to choose the optimum bit length for coefficient storage. Especially for
systems with large number of coefficients this procedure will yield a considerable saving in hardware.

Due to coefficient representation error introduced via finite precision effects, the filter being checked is different
than the designed filter. If a robustness region is available, one may determine whether the latter is indeed limit
cycle free.

2 NOMENCLATURE

The following notation will be used throughout the paper.
mXn, zmxn Set of matrices of size m x n over the reals and integers.

(i, j)-th element of the matrix A = {a23}.
I, 0 Identity matrix and null matrix of appropriate sizes.
E,3, E A square zero matrix with '1' at its (j,j)-th position, E,, = I — E33.
x(k) Filter state vector at instant k.
x1(k) i-th component of the state vector x(k).
M Upper bound for absolute value of amplitude of x(k), k E Z.
Q[.] Quantization nonlinearity operator.
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3(0) Set of state vectors satisfying the upper bound J such that
lxil�&Vi.

conv[.J Convex hull of set [.}.

3 ROBUSTNESS REGION CONSTRUCTION

Consider a filter that has been identified as limit cycle free by an appropriate algorithm.1 To determine the
robustness region for this filter all orbits traversed by the nominal filter for a given set of initial conditions has to
be computed' before the algorithm can be applied to compute the robustness region.

The general realization of a filter state propagation represented in state—space form under zero input conditions
with the appearance of a pertinent quantization nonlinearity (Q) can be modeled as

x(k+1) = Q[A.x(k)} (1)

WhereAEmxm andxEm.
Then it can be concluded' that

1x1(k)I � M1 V i where M2 E Z (2)
Where is the upper bound or the maximum occurable number for the state x2 with respect to the given filter.
Hence from (2) the maximum period of a limit cycle is bounded by

T<ll(2Jfi+1)Tmaz (3)

The set of initial conditions satisfying (2) can be represented by the set

= {x(k) E Ztm Ilxj()l � = i,2, . . . m
} (4)

We use the notation OA to denote all orbits being traversed by the nominal system matrix A for all initial
conditions given by (4).

Consider a small perturbation of each coefficient about its nominal value a3 . Due to quantization, it is
possible that

x(k+ 1) = Q[(A + A) x(k)} = Q[A . x(k)}, (5)
where zA = {iajj} E mxm and

La [zai , Lai2, 1 . . . ,Lajm] E m, , 2, . . . , m. (6)

We now make an important observation: Given the nominal filter A that has already been verified to be limit
cycle free, we only consider those filters A + zA that follow identical orbits as A. Hence, with identical initial
conditions, OA = °A+A• Note that, there are a maximum of Tm —1 different orbits in OA, and we enumerate
them as

OA{OItl,...,T,T�Tmaxl,}. (7)

where
O {X(t)(O),X(t)(1),...,X(t)(Tmax 1)}, t 1,...,Tmaxl. (8)

Hence, from (2) and (4), we see that the upper bounds and S° corresponding to A and A + \A are identical.
From a designer's point of view, the fact that we restrict ourselves to those filters in the robustness region that
possess identical impulse responses, we believe, is more sensible.
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Next, recall the following quantization characteristics:
For Sign-Magnitude Roundoff (SMR) quantization,

(x—1 � a < X+, x>O
QsMR[a]=x* x— < a � x+, x<O (9)

I — < a < +, x=O.
For Two's Complement 'Luncation (TCT) quantization,

QTcT[a] = x { 2: � a < 2; + 1, Va;. (10)

For Sign-Magnitude Truncation (SMT) quantization,

I x � a < x+1, x>0
QsMT[a]=x= x—1 < a � x, x<0 (11)

( —1 < a < 1, x=0.

Double-Length Accumulator Case
In this case, (5) is interpreted as follows: For two consecutive vectors x(k), x(k + 1) E O

Q
[(aii+Laii).xi(k)]

=Q
[>aii.xi(k)]

=x(k+1). (12)

Substituting (12) into the quantization scheme being used, that satisfy (5) takes the following forms:
For SMR quantization, for k = 0,1,.. . , Tmax — 1,

forx(k+1) >0

g(i) — x(k+ 1)— —> a3x2(k) <La -x(k) � x(k+ 1) + — 1ax(k)
(13)x(k)

—
for x5(k+ 1) <0

1aj3: —— E71ax(k) <za1 .x(k) <j —

for x(k+ 1)=0.

For TCT quantization, for k= 0,1,. .. , — 1,

g(s) f ia23: 14
x(k) Vx1(k+1).

(

For SMT quantization, for k =0,1,. . . , T 1,

za1: x(k+1)—>..1a1x(k) � a1.x(k) <x,(k+ 1)+1—>271a1jx1(k)
for x2(k+1) >0

g(i) — La1 : x,(k+ 1) —1— <zaj .x(k) � x3(k+ 1)— E7..1ajx3(k) (15)x(k)
—

for x3(k+1) <0

a1: —1— >1a1x(k) <za .x(k) < 1— a25x1(k)
for x3(k+1)=0.

Note that, each of these inequalities are of the following form:

cik i La xt(k) /3ic, k = 0,. . . , Tmax — 1, (16)
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1. At each iteration step, grid G(r) created by bisection of the 1-D edges [,0] and [O,i11]. This allows a
better approximate of .

2. In practice, there was no significant growth in ii aiter r =3. Hence, this procedure is quite fast.

3. Computational speed of an actual implementation of the above may be significantly increased by incorpo-
rating the following:

(a) At each step, all grid points in G(T) need not be checked; some have already been checked in prior
steps.

(b) Certain orbits are partially overlapped; these portions need not be repeatedly checked.

Single-Length Accumulator Case
In this case, (5) is interpreted as follows: For two consecutive vectors x(k), x(k + 1) E O,

>.Q[(ajj+Lajj).xj(k)J=>Q[ajj.xj(k)]=xj(k+1). (19)

A sufficient condition for (19) to be valid is

Q [(ajj + za1) • x3(k)} = Q [ci13 •x(k)] , i,j = 1, 2, . . . , m. (20)

It is this condition that we utilize to obtain the robustness region. Hence, unlike the double-length accumulator
case, the region obtained here would be conservative.

Substituting (20) into the quantization scheme being used, za1 that satisfy (5) takes the following forms:
For SMR quantization, for k =0,1, .. . , T — 1,

za13:
for1(k+1)>0

g(ii) aij: 21x(k)
—

for(k+1) <0

for1(k+1) =0.

For TCT quantization, for k = 0,1,. . . , Tmax — 1,

ç(ii) — I Lai, :
22x(k) V;(k+1). (

For SMT quantization, for k =0,1,. .. , T — 1,

za1:
for t5(k+1) >0

g(ii) — : 3(k + 1)— 1 —a1 .x,(k) < Ea1 .x(k) � 71(k+ 1) —a x,(k) 23x(k)
—

for5(k+1) <0 (

—1—a13 .x,(k) < •x,(k) < 1—aj, .x,(k)
for 5(k+ 1) = 0.

Here, t(k + 1) .x5(k)]. Note that, each of these inequalities are of the following form:

x1(k) <flkJ, k = 0, . . . , Tmax — 1, j = 1,2,.. . , m. (24)
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Consider the mapping
101 1X71
I It—I I x7,x8EZLJ 1x8J

The inequalities for the above iteration is,

O�—ax7+ax8<1 (31)

1<ZX7OX8<2 (32)

When 0.5 < a < there are two vectors satisfying (31) and (32) that converge to [0 i]t, they are

11-21 [-1
[-i I ' -1

it is observed that only one vector converge to [0 l} in the entire region given by 0.5 < a < namely
[—1 — l}. As a increases the area inside the diamond formed by (31) and (32) grows smaller, and at one point
the vector [—2 — l] falls outside the boundary of the diamond. The edge where this crossing occurs is given
by (32).

0.X7 — ax8 <2

If [—2 — l] is just satisfied

—a(—2) — a(—1) <2 -+ a <

Therefore for 0.5 <a < lol 11—21 1—i
11 j L -l j '1 -li 2.- 1anu or a

101 1—i[ii - [-i
For future calculations let us only consider the parameter values � a < . Following the earlier procedure
the orbit is constructed for � a <

101 1—il Iii 1—i[ij[-ij[oj[ 1
Consider the mapping

{

—1

] __ [
xis

]
xi3,xi41 X14

The above mapping consists of the two inequalities given by,

—1 < —aX13 + aX14 <0 (33)

—l � aXi3 — (2X14 <0 (34)

It is seen that apart from the two initial conditions [—1 — 1] and [—1 —2] which lie on the open boundaries
there are no integers inside the region. Hence we can conclude that in the region given by a < there are
no integers that converge to [—1 1]. That is for � a < the orbits that reach 0 will only have vectors that
were obtained in Steps 1-6. The upper bound' for the matrix given in (27) is given by

2a + 1
1 — 2a2
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Therefore for the variation a < the upperbound variation is given by

21 � M < oo

Note that both components of a vector will be bounded by the same value. This implies that in the region
considered not all vectors in the set 8(0) converge to zero. Hence it can be concluded that for a filter given by
( 27) with � a < under two's complement truncation and double length accumulator environment will have
limit cycles.

5 RESULTS

The results are listed for a digital filter in a 10 Bit environment. Since most industrial applications are made
out of second order blocks the results are given for a second order filter. Consider a second order digital filter
subsection with the transfer function given by (35).

:i
H(z) _ O.8z1 + O.32z2 (35)

The poles of the above transfer function, if infinite wordlength is assumed, are located at 0.4 jO.4. If (35) is
converted into state-space form the normal form coefficient matrix is

A — —0.4000 0.4000 1
N,oo —0.4000 —0.4000 j (36)

The closest 10-bit machine representable form of AN is as follows:

409 409
1024 1024

AN,1Q . (37)
409 409
1024 1024

This matrix is limit cycle free; its robustness region, together with (1°, and ç2) e depicted in Fig. (1).
Notice that,

; 4Q:..L.../(. ..
—425 —420 —415 —410 —405 .400 —505 —390 —395

1*141054

(a)

Figure 1: Robustness region for (37)
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408 408 102 102
1024 1024 256 256

AN,lo = = (38)
408 408 102 102
1024 1024 256 256

falls on this 10-bit grid as well as the 8-bit grid within the robustness region. Hence, being certain of no limit
cycles as the robustness region indicates, one may represent the filter coefficients with only 8-bit registers! In
fact, there are several choices for the designer; for example, a filter with coefficients 104/256 also
falls on both grids. The impulse responses of (36) and (37) are plotted in Fig. (2). We notice that they are
identical hence the designed system and the implemented system will have similar characteristics. In high order
filter implementations, savings accrued via shorter coefficient registers can be substantial, especially in high speed
applications.

AN,oo AN,1O
1 1

0 0 00

0 5 10
n

15 0 5 10 15
—.1 —1

n

(A ()
Figure 2: Impulse response of, (a) (36) and (b) (37).

Zero Robustness Results Consider the following normal form matrix on the 450 line,
672 672
1024 1024

AN,10 . (39)
672 672

1024 1024

The robustness region for the above matrix is plotted in Fig. (3), it is seen that it has zero robustness thus
supporting the proof in section 4. A series of stable points will extend on the 45° line up to a <

6 CONCLUSION

A novel technique for constructing the robustness region for a given digital filter was presented. This technique
explicitly constructs the region to the required degree of accuracy under the assumption of identical orbits. The
algorithm is highly versatile since the digital filter is assumed to be in its state-space form. It is also applicable
to any arithmetic type, order, and for single as well as double length accumulator lengths. The complexity of the
computations increases with the filter order.

The constructed region can be used to optimize the bit length allocation for the filter coefficients. A shorter
bit length for for the coefficient storage will yield cost effective designs when the filter considered has a large
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Figure 3: Robustness region for (39).

number of coefficients. In conclusion this algorithm provides a valuable design tool for filters having low or zero
input conditions. degree of accuracy
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