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Wind power, as a renewable energy resource, has taken much attention of the energy authorities in many countries, as it is used as
one of the major energy sources to satisfy the ever-increasing energy demand. However, careful attention is needed in identifying
the wind power potential in a particular area due to climate changes. In this sense, forecasting both wind power generation and
wind power potential is essential. -is paper develops artificial neural network (ANN) models to forecast wind power generation
in “Pawan Danawi”, a functioning wind farm in Sri Lanka. Wind speed, wind direction, and ambient temperature of the area were
used as the independent variable matrices of the developed ANN models, while the generated wind power was used as the
dependent variable. -e models were tested with three training algorithms, namely, Levenberg-Marquardt (LM), Scaled
Conjugate Gradient (SCG), and Bayesian Regularization (BR) training algorithms. In addition, the model was calibrated for five
validation percentages (5% to 25% in 5% intervals) under each algorithm to identify the best training algorithm with the most
suitable training and validation percentages. Mean squared error (MSE), coefficient of correlation (R), root mean squared error
ratio (RSR), Nash number, and BIAS were used to evaluate the performance of the developed ANN models. Results revealed that
all three training algorithms produce acceptable predictions for the power generation in the Pawan Danawi wind farm with
R> 0.91, MSE< 0.22, and BIAS< 1. Among them, the LM training algorithm at 70% of training and 5% of validation percentages
produces the best forecasting results. -e developed models can be effectively used in the prediction of wind power at the Pawan
Danawi wind farm. In addition, the models can be used with the projected climatic scenarios in predicting the future wind power
harvest. Furthermore, the models can acceptably be used in similar environmental and climatic conditions to identify the wind
power potential of the area.

1. Introduction

-e world’s energy demand is ever-increasing, and related
research presents numerous models to forecast future energy
demand [1]. As climatic reasons and environmental con-
ditions have forced the world to move to green energies,
many countries have shown their interest in this topic by
implementing new policies, rules, and laws in their com-
munities and at least in some of the selected areas [2]. Some
cities are named green cities where there is a minimum level
of greenhouse gas emissions [3, 4]. Some countries have
already proposed annual targets to achieve certain per-
centages of their energy demand by renewable energy

sources.-erefore, renewable energy is a highlighted topic in
the twenty-first century. Solar, wind, biomass, geothermal,
hydropower, and ocean waves are some of the readily
available renewable energy sources to date in the world. On
average, 26.2% of the 2018 world’s energy demand was
supplied by renewable energies, and it is forecasted to in-
crease the percentage up to 45% by the year 2040 [5].

Wind energy is one of the best solutions for global
warming because it is completely pollution-free and causes
no greenhouse effects [6]. It has become a cost-effective
approach due to the rise in fossil fuel prices [7]. -e wind is
the only natural source of energy available everywhere and,
therefore, it is the most promising renewable energy source.
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Its contribution to the world’s energy demand is going to be
increased in the future with the ending of the fossil fuel era
[8].

Sri Lanka, as a country, is also in discussions for the
generation of renewable energies, and it is proposed to
generate renewable energy to meet 100% of the country’s
demand by 2050 [9]. However, according to the statistics of
the Ceylon Electricity Board [10], as of now, the majority
(67.02%) of total electricity generation in Sri Lanka is done
using thermal oil and coal followed by hydropower (30.16%).
Wind power contributes only for 2.55% of the power
generation in Sri Lanka. -erefore, Sri Lanka spends
thousands of million dollars to import crude oil, which is
about 25% of the expenses for imports and equals 45% of
income from exports [11]. On the other hand, nearly
5,000 km2 of windy areas was identified in Sri Lanka with
good-to-excellent wind resource potential as reported by the
Sri Lanka Sustainable Energy Authority [12].

However, the wind speed is intermittent and volatile,
which makes influences on the safe operation of the power
grid showing random, unstable, and antipeaking charac-
teristics [13]. It may seriously affect the quality of electric
power and the operation of the power grid. If the output of
wind power generation can be accurately forecasted, the
negative influences that wind power brings to the grid can be
reduced by a large extent [14]. -e accuracy of wind power
prediction is important for balancing the power generation
as well [15]. Wind power forecasting is important in en-
suring the reliability of power systems and in reducing the
cost of the power system too. Further, accurate predictions
are helpful to the government, policymakers, and other
responsible authorities for taking necessary actions.

Identifying the importance of forecasting wind power
generation, researchers have applied numerous statistical,
data mining, and machine learning techniques for devel-
oping prediction models [16–21]. Artificial neural network
(ANN) was found to be highly popular among researchers in
the field of wind power prediction. ANN was applied to
assess the wind energy output of seven wind farms in Tamil
Nadu, India, using data collected over a period of 3 years
[22]. -ree input variables, namely, wind speed, relative
humidity, and generation hours, and one output variable
(i.e., the energy output of wind farms) were used for
modeling in MATLAB resulting in the root mean square
error (RMSE) of 0.0806 and the overall percentage error of
4%. Another research based on ANN was conducted using
the input parameters of average wind speed, average relative
humidity, and generation hours of wind farms in Rajasthan,
India [23]. -e backpropagation algorithm was applied, and
the mean squared error (MSE) becomes stable at 0.0070 after
300 iterations. Another ANN-based research with back-
propagation was applied to develop a forecasting system for
power generation in some wind fields in China [13].
According to a case study conducted in Tasmania, Australia,
the prediction behavior of the ANN model is more accurate
than the Similar Days approach when the performance is
compared based on the daily mean absolute percentage error
(MAPE) [24]. Research conducted in Prince Edward Island,
Canada, concludes that ANN outperforms Fuzzy Predictor,

Adaptive Neural Fuzzy Inference System, and Committee
Machines in wind power prediction [25].

-e prediction of wind power generation is possible for
future years if the independent variables (climatic data) are
available as projected climatic variables. Related research
studies are extensively carried out [26–30], and projecting
future climate under different scenarios is often reported.
Representative Concentration Pathway (RCP) is one such
climate projection scenario [31–36] widely adopted by the
Intergovernmental Panel on Climate Change (IPCC).
RCP2.6, RCP4.5, RCP6.0, and RCP8.5 are four scenarios
based on the greenhouse gas concentration, and the pro-
jection of various weather factors is readily available.

Forecasting the energy output of wind farms bymeans of
short-term, medium-term, or long-term prediction is re-
ported. Hossain et al. presented extrapolation of wind speed
and apply data on adaptive neurofuzzy inference systems to
develop monthly and weekly wind power density prediction
models in Malaysia [37]. Metaheuristic techniques such as
ant colony optimization and particle swarm optimization
were also incorporated to develop forecasting models [38].
In Iran, the empirical hourly wind power output of a wind
farm over a year and data of wind speed and ambient
temperature were collected, and a prediction model was
introduced [38]. -e meteorological data consisting of wind
speed and ambient temperature is used as the inputs to the
mathematical model. Both the statistical and the neural
network-based approaches were applied to predict hourly
wind speed data of the subsequent year for long-term
prediction [39].

However, to the authors’ knowledge, only a few research
studies have been carried out to forecast wind power in the
context of Sri Lanka. Nevertheless, neural networks were
used in the prediction of various energy-related research
[40]. -erefore, it is highly important to carry out such a
research to forecast the wind power of an already established
wind farm in Sri Lanka. -is will lead to understanding the
importance in the context of Sri Lanka, while the results can
be used for identifying the potential future wind power
generations in the country. Fulfilling this research gap, the
presented paper is focused on forecasting wind power
generation in a wind farm in Sri Lanka: “Pawan Danawi”.

2. Methodology

2.1. Study Area and Data Collection. -is research work is
done based on the “Pawan Danawi” wind farm, which is
located in Kalpitiya (around 08°02′56″N 79°43′08″E),
North-Western area in Sri Lanka (Figure 1). -is geo-
graphical area was identified as one of the best locations in
Sri Lanka to establish a wind farm [41, 42]. It is an onshore
wind farm, which has a 10.2MWnameplate capacity with 12
wind turbines (model: Gamesa G58-850) for its operation.
-e height of each tower is around 65m, and the diameter of
the blades is around 58m. -e project was completed and
connected to the national grid for its operation in August
2012.

Each wind turbine has three blades, and its rated power
is 850 kW.-e generation voltage of the plant is 690V (AC),
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and it is stepped up using a transformer to 33 kV for
connecting to the national power grid as the transmission
voltage in Sri Lanka is 33 kV. -e rotational speed of the
rotor varies between 19.44 and 30.8 rpm, and the rated stator
current at 690V is 670A. -e standard power factor at the
generator output terminals at the low voltage side before
transformer input terminals is 0.95 at partial loads and 1 at
nominal power.

Monthly average power generation data (MW) from
January 2015 to December 2019 (5 years, 60 data sets) were
obtained from the wind farm authorities. Figure 2 exhibits
the variation of generated power over the 5 years. -e
maximum power generation is around 3.0MW. -e peak
power generation can be seen in the months of June, July,
and August, where most of the regions in Sri Lanka receive
speedy winds. -e current output was also calculated as-
suming a unity power factor and its variation over the year
2019 is illustrated in Figure 3.

Figure 4 shows the variation of average wind speed over
the months for the previous 5 years. -e variation over the
months in each year looks similar, and speedy winds could
be observed in the months of June, July, and August.

As the peaks of both wind power generation and wind
speed are visible in the same months in each year, their
relationships were plotted in Figure 5 for further analysis. It
indicates that power generation is exponentially correlated
with wind speed. Further, most of the time, the wind speed
varied between the cut-in speed and the cut-out speed of
3.0m/s and 20.0m/s, respectively. -e coefficient of deter-
mination obtained for the trend line of Figure 5 clearly
shows that the predictive power exponentially varies with
the wind power and wind speeds. However, the power
generated by a wind turbine depends not only on the wind
speed but also on the density of air [43]. -erefore, climate
parameters of average wind speed (m/s), average wind di-
rection (o), and average ambient temperature (°C) were
considered input variables in the modeling process. -eir
statistics were used with the average power output (MW)

data in the period of January 2015 to December 2019. -e
monthly climatic data were collected from the wind farm, as
there is an in-house meteorological station.

2.2. ANN Algorithms. A feedforward artificial neural net-
work model was developed to predict the power generation

Figure 1: Study area of Pawan Danawi (image from https://earthexplorer.usgs.gov/).
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Figure 2: Variation of monthly wind power generation.
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Figure 3: Variation of current output over the year 2019.
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of the Pawan Danawi wind farm. -ree frequently used
algorithms, namely, Levenberg-Marquardt (LM), Scaled
Conjugate Gradient (SCG), and Bayesian Regularization
(BR), were applied for training data [44, 45]. LM training
algorithm is a combination of the steepest descent and the
Gauss-Newton method. LM includes the efficient quality of
the Gauss-Newton method, which shows the back-
propagation of the ANN, and the stability qualities of the
steepest descent method [46]. It has been identified as an
efficient and ideal algorithm for medium size networks [47]
and thus widely used. However, it is not recommended for
large-sized neural networks due to its memory limitations
[48].-e Levenberg-Marquardt algorithm can be expressed
as follows:

H � J
T
J + μI, (1)

where μ is the combination coefficient, which is positive, I is
the identity matrix, and J represents the Jacobian matrix.
-e Gauss-Newton behavior of the LM can be expressed as
follows:

Wk+1 � Wk − J
T
k × Jk + μI􏼐 􏼑

− 1
× Jk × ek, (2)

where Wk+1and Wk are weights calculated using the Gauss-
Newton method.

SCG algorithm is a combination of the conjugate gra-
dient approach and the model trust region approach. As it
has avoided the line search technique by using the trust
region approach, it is a much faster technique [49]. -e SCG
algorithm is widely used with problems that have a higher
number of linear equations. It takes fever memory and the
training process stops when generalization deescalates, in-
dicated by the increasing the mean squared error (MSE)
[50].

In the BR algorithm, a conventional sum of the least
square error function is combined with regularization.
-erefore, it forces the neural network to converge to a set of
weights and acquire minimum values for the biases, pushing
the network to be smooth [51]. BR algorithm is based on the
probability distribution concept. Hirschen and Schafer
proposed that “test set” or “validation set” is not necessary
for BR, and the complete data set can use used for model
fitting andmodel comparison [52]. In general, this algorithm
takes a little more time to train, but this is ideal for relatively
smaller and difficult data sets [26].

2.3. Development of Prediction Models. -e ANN models
were developed based on three major climatic factors in
the area, which are directly affecting the power generation.
-e governing equation for the model development is
given in

Power � F(wind speed,wind direction, ambient temperature).

(3)

MATLAB version R2014b was used to develop the ANN
framework for this study. -e model has three independent
variable matrices as shown in equation (3) with one de-
pendent variable matrix. To complete the nonlinear for-
mulation and architecture of the ANN, a single hidden layer
was imposed on the modeling process. Training of the ANN
was performed on 70% of the data set while a calibration
process was carried out to reach a better validation data
percentage. -e calibration process was conducted in in-
tervals of 5% from 5% to 25%. -erefore, the testing per-
centage of the process was automatically changed. In
addition, a calibration was carried out in searching for a
better training algorithm. Levenberg-Marquardt (LM),
Scaled Conjugate Gradient (SCG), and Bayesian Regulari-
zation (BR) training algorithms were independently used in
the training process. -e process was conducted for 30
different runs for each case. In other words, 150 (� 5 × 30)
separate runs were performed for one training algorithm
resulting in 450 runs in total.

-e performance of the training algorithms is evaluated
by widely used techniques: Mean Squared Error (MSE),
Coefficient of Correlation (R), and BIAS. -ey were de-
termined for all three training algorithms with all five val-
idation percentages. Root mean squared error ratio (RSR)
and Nash number were also used to evaluate the perfor-
mance of the ANN models. -e calculation of MSE, R, RSR,
Nash number, and BIAS is given in equations (4)–(8),
respectively.
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Figure 4: Variation of monthly wind speed.
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MSE �
􏽐

N
i�1 Oi − Ei( 􏼁

2

N
, (4)

where Oi is the observed power generation, Ei is the expected
or predicted power generation, and N is the number of data
points in the matrix:

R �
􏽐

N
i�1 Oi − O( 􏼁 Ei − E( 􏼁

�����������������������

􏽐
N
i�1 Oi − O( 􏼁

2
. 􏽐 Ei − E( 􏼁

2
􏽱 , (5)

where O and E are the means of observed and predicted
power generations, respectively.-e smaller MSE values and
R values closer to 1 indicate highly accurate models.

RSR �

����
MSE

√

σ
, (6)

where σ is the standard deviation of the observed power
values.

Nash number � 1 −
􏽐

N
i−1 Oi − Ei( 􏼁

2

􏽐
N
i−1 Oi − Oaverage􏼐 􏼑

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (7)

BIAS �
􏽐

N
i�1 Ei − Oi( 􏼁

N
. (8)

3. Results and Discussion

-e results of the comparison of validation percentages
(calibration of different training algorithms at various vali-
dation percentages) show that a validation percentage of 5%
gives the lowest MSE at epoch 2 for the LM algorithm. At the
same time, the corresponding overall R value is 0.94, which is
almost equal to the results of the other four percentage
values (10%, 15%, 20%, and 25%). Figure 6 shows the
variation of the predicted versus actual power for the LM
algorithm at the validation percentage of 5%. Overall, the
LM training algorithm has successfully predicted the wind
power generation according to equation (3).

Calibration of SCG training algorithm shows a better
performance at validation percentage of 10% with the
minimum MSE of 0.017 at epoch 21. Figure 7 shows the
variation of the predicted versus actual power of the cor-
responding model. According to the results of SCG, there is
a strong correlation between input parameters and power
output at all five validation percentages.

Unlike the LM and SCG training algorithms, BR training
algorithms show the best performance at 15% of validation
percentage at epoch 922. However, the minimum MSE
values of the BR algorithm are smaller than those of the other
two algorithms and obtained at a much higher epoch. In
addition, there is a strong correlation between input pa-
rameters and power output at all five validation percentages
in the BR algorithm.

-e performance of all models was analyzed in terms of
R, MSE, and BIAS. -e results are summarized in Table 1.
According to the results, the coefficient of correlation is

higher than 0.94, MSE values are less than 0.17, and BIAS
values are less than 1, which clearly demonstrates the ac-
curacy of the models. Furthermore, MSE values obtained in
the BR-based models are smaller compared to the other two
algorithms; however, they are at higher computational costs.

When considering the computational efficiency of the
three algorithms, LM and SCG produce minimum MSE at
relatively lesser epochs. -at means LM and SCG have
reached the optimum result in less time. Among them, LM
has the least number of epochs.-at means the performance
of LM is much better. However, in the case of BR, the
number of epochs that had to be run to reach the optimum
result is very high. It shows that BR is more time-consuming
than the other two algorithms to reach the optimum.

Variation of the predicted and actual power levels for the
LM algorithm with a validation percentage of 15% during
the past 5 years is illustrated in Figure 8. According to the
results, the error is negligible in most of the months and
numerically less than 0.9MWdemonstrating the accuracy of
the LM-based ANN model. As per the calculations, it ex-
hibits an RSR of 0.524 and a Nash number of −0.723.

Figure 8 is an interesting figure as it clearly shows the
capabilities of the ANN model developed based on equation
(3). In other words, the predicted power output is based on
the wind speed, wind direction, and the ambient temper-
ature of the area of interest. -e prediction of wind power
generation is possible for future years if the independent
variables (climatic data) are available as projected climatic
variables.

-erefore, the model development presented in this
research is useful in predicting the future wind power
generation by the Pawan Danawi wind farm. Such a model
is not only useful for a particular wind farm but also highly
valuable for the country itself in the path of developing
renewable energy. -erefore, the developed prediction
model can be considered as a starting point, and then, it can
be further expanded and used across the country for
forecasting the wind energy generations in future years. In
addition, the model can be easily adopted by the regions
and areas which have similar environmental and climatic
conditions and develop the feasibility activities for future
wind farms. -is is highly essential in the development
plans of a particular country. Similar studies conducted by
other researchers based on data collected from wind farms
located in other countries are summarized in Table 2. ANN
and some other machine learning techniques such as
support vector machine (SVM), neural network (NN),
random forest (RF), and k-nearest neighbor (k-NN) and
fuzzy logic techniques were used for developing wind
power prediction models. Among them, ANN reported
suitable to forecast the wing power generation accurately
outperforming other techniques [13, 22–25]. Statistical
parameters such as mean absolute percentage error
(MAPE), root mean square error (RMSE), mean absolute
error (MAE), and correlation coefficient were used to assess
the performance of the prediction models. In contrast, the
accuracy of the proposed model was proven by using five
statistical parameters.
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Figure 6:-e predicted versus actual power for the LM algorithm at the validation percentage of 5%: (a) training, (b) validation, (c) test, and
(d) overall.
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Figure 7: Continued.
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Figure 7: -e predicted versus actual power for the SCG algorithm at the validation percentage of 10%: (a) training, (b) validation, (c) test,
and (d) overall.

Table 1: Performance of the algorithms for different validation percentages.

Validation percentage ANN training algorithm Number of epochs R MSE BIAS

5
LM 2 0.94 0.024 0.078
SCG 14 0.95 0.021 -0.027
BR 603 0.97 0.000 0.023

10
LM 4 0.91 0.114 -0.001
SCG 21 0.96 0.017 -0.182
BR 314 0.94 0.006 -0.166

15
LM 2 0.97 0.219 0.010
SCG 19 0.95 0.163 -0.995
BR 992 0.98 0.008 -0.281

20
LM 2 0.97 0.127 0.536
SCG 17 0.95 0.160 0.539
BR 408 0.99 0.000 -0.276

25
LM 2 0.97 0.147 0.522
SCG 17 0.94 0.168 0.708
BR 413 1.00 0.000 -0.367
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4. Conclusions

Forecasting models based on the artificial neural network
were developed to predict the wind power generation of
Pawan Danawi wind farm in Sri Lanka. -e results show-
cased the capabilities and robustness of the prediction
models developed under various training algorithms in
which the Levenberg-Marquardt (LM) algorithm with a
validation percentage of 15% produced the best results.
-erefore, the LM-based ANN model is proposed to predict
the potential wind power generation with the help of pro-
jected climatic scenarios in future years. Accordingly, the
results of the research open a new era for the wind power
generations in Sri Lanka to plan its energy demand and
supply in the future. Sri Lanka, as a developing country, can
effectively use this development to achieve its sustainable
goals in renewable energy generation at a low cost. In ad-
dition, the results can effectively be used in similar climatic
areas in the country to showcase the feasibility of wind
power potential and its economic worth. However, research
expansions are proposed with more data probably from the
Kalpitiya area as the establishment of fewmore wind farms is
in progress.
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data.
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