
ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, KOREA

Training of Fuzzy-Neural Network for Voice-Controlled Robot Systems by a Particle Swarm
Optimization

Keigo Watanabe†, Amitava Chatterjee†, Koliya Pulasinghe†,
Sang-Ho Jin‡, Kiyotaka Izumi† and Kazuo Kiguchi†

† Department of Advanced Systems Control Engineering, Saga University, 1-Honjomachi, Saga 840-8502, Japan
(Tel: +81-952-28-8602; E-mail: {watanabe, izumi, kiguchi}@me.saga-u.ac.jp)

‡Department of Mechanical Engineering, Doowon Technical College, 678, Jangwon-ri, Juksan-myon,
Ansung-shi, Kyonggi-do, 456-718 Korea

(Tel: +82-31-670-7134; E-mail: shjin@doowon.ac.kr)

Abstract: The present paper shows the possible development of particle swarm optimization (PSO) based fuzzy-neural networks (FNN) which
can be employed as an important building block in real life robot systems, controlled by voice-based commands. The PSO is employed to train
the FNNs which can accurately output the crisp control signals for the robot systems, based on fuzzy linguistic spoken language commands,
issued by an user. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system.
Hidden Markov Model (HMM) based automatic speech recognizers are developed, as part of the entire system, so that the system can identify
important user directives from the running utterances. The system is successfully employed in a real life situation for motion control of a
redundant manipulator.

Keywords: Particle-swarm optimization, fuzzy-neural network, voice-controlled robots, redundant manipulators

1. Introduction
Particle swarm optimization (PSO) has very recently emerged
as an important combinatorial metaheuristic technique for both
continuous-time and discrete-time optimization. In the last ten years
or so, many research efforts have been directed towards develop-
ment and exploration of this new technique which is based on the
social metaphor of bird flocking or fish schooling [1]–[3]. Like ge-
netic algorithm (GA), PSO is also initialized with a random pop-
ulation of candidate solutions which are flown in the multidimen-
sional search space in search of the optimum solution [4],[5]. One
of the main advantages of PSO, which has endeared itself to the
research community is that it is comparatively simple in operation
and easier to understand compared to other evolutionary computa-
tions presently available, e.g. GA, evolutionary programming, ge-
netic programming, etc. [4]. PSO employs smaller number of free,
tunable parameters [5] and hence should be able to attract more at-
tention from the industrial community which would prefer a simple
yet efficient algorithm to solve their relevant problem domains.

The early works on PSO have shown the employment of the algo-
rithm for a number of benchmark problems with a variety of di-
mensions. Most of these experimentations indicated that PSO can
be very useful in certain problem domains to arrive at a fast solution
[5]. To overcome getting stuck in local minima, different improved
variations of PSO have been reported which additionally employ
static and varying inertia weights and constriction factor [2]. PSO
has also recently evolved as a viable alternative to tune fuzzy and
neuro-fuzzy systems [7]. However one of the main question that
still remains unanswered is that can PSO be effectively applied in
developing a real world system? This question inspired us to under-
take the present work.

The present paper describes the effective utilization of PSO to train
a Takagi-Sugeno (TS)-type fuzzy-neural network (FNN) as an im-
portant building block of voice-controlled robot systems. Voice-

Amitava Chatterjee was on leave from Electrical Engineering Department, Jadavpur University,

Kolkata - 700 032, India, when this work was performed.

controlled robots are gradually attracting more and more attention
due to their capability of incorporating human-friendly spoken, nat-
ural language based interface [10]. Development of socially respon-
sible, mature Robots guided by spoken language commands can be
very useful for nursing and aiding the elderly people, for physically
handicapped people, for people struck with paralyses and even as
companion for children. The PSO has been successfully employed
to tune the TS-type FNN which is employed to acquire fuzzy lin-
guistic information from human experts and to provide crisp and
smooth performance for a selected action of the robot. The suitabil-
ity and effectiveness of the proposed PSO-trained FNN for voice-
controlled robot systems are aptly demonstrated by applying it for a
real life situation for motion control of a seven degrees-of-freedom
redundant robot manipulator.

2. The Particle Swarm Optimization
PSO, like other evolutionary computations, always initializes a pool
of particles with random positions and velocities in a multidimen-
sional space. The algorithm is shown in form of a flow chart in Fig.
1. In each iteration k PSO calculates the fitness function f for each
potential solution, by utilizing the current positional coordinates of
the jth particle xj inN -dimension. If the value of the fitness func-
tion, f , is not found satisfactory, then the position xj and velocity
vj of the jth particle is updated according to position and velocity
update relations. The new velocity of the jth particle in nth dimen-
sion, for the (k+1)th iteration, is calculated as an additive influence
of three major components, i) component I: the current velocity (at
kth iteration) of the jth particle in nth dimension (denoted by vjn),
ii) component II: the difference between the nth dimension com-
ponent of the best position obtained by the jth particle, until now
(denoted by pjn) and the current position (at the kth iteration) of the
jth particle in nth dimension and iii) component III: the difference
between the nth dimension component of the best position obtained
by any particle in the topological neighborhood of the jth particle,
until now (denoted by pgn) and the current position (at the kth it-

Initialize the population S

Evaluate fitness for the jth particle

Is termination
criterion met? stopyes

Update velocity and position of the jth particle in nth dimension

no
Increase n by 1 until n = N

Increase j by 1

j >S ?

yes

no

Start new iteration with j = 1

Fig. 1. The Particle Swarm Algorithm.

eration) of the jth particle in nth dimension. The influence of each
of the components II and III are stochastically weighted and added
to component I to obtain the updated velocity. This velocity update
relation can be given as:

vjn(k + 1) = vjn(k) + ϕ1(pjn(k) − xjn(k))

+ϕ2(pgn(k) − xjn(k)) (1)

ϕ1 and ϕ2 are two uniformly distributed random positive numbers,
used to provide the stochastic weighting, and they are restricted by
the maximum value of ϕmax . Usually ϕmax is chosen between 1.6
and 2.0. To prevent any unwanted exploration of a particle along
a given dimension, its velocity in that dimension is restricted by
its maximum permissible value (vn max). This option is exercised
to keep the random search of the potential solutions, in quest of
a better fitness, within control. Then the new position of the jth
particle in nth dimension is calculated as:

xjn(k + 1) = xjn(k) + vjn(k + 1). (2)

However, like many other evolutionary computations, PSO algo-
rithm with these velocity and position update rules also suffers from
the problem of too aggressive search in the problem space when
vn max is chosen high. This can cause large oscillations in the tra-
jectories of the particles prohibiting them to settle to a reasonable
solution due to too course tuning in each iteration. On the other
hand, choice of a too small value for vn max can cause very small
updating of velocities and positions of particles in each iteration.
Hence the algorithm may take a long time to converge and faces the
problem of getting stuck to local minima. To overcome these situa-
tions various researchers have recently proposed improved velocity
update rules with dynamic inertia weights or employing constriction
coefficients. Velocity update relations with dynamic inertia weights
can be given as:

vjn(k + 1) = W (k + 1)vjn(k) + ϕ1(pjn(k) − xjn(k))

+ϕ2(pgn(k) − xjn(k)). (3)

Here the influence of the old velocity on the new velocity is
weighted by the inertia weight W . This inertia weight is usually
chosen a variable quantity. For early iterations, they can be chosen

Performance
Evaluation
Network

Performance
Evaluation
Network Task N

Task 1

Task N Control
Signal

Task 1 Control
Signal

Speech
Recognizer

Speech
Recognizer

User
Utterance

Task
Identification
Information

Performance
Evaluation
Information

Current Crisp Values of Tasks

Task
Identification

Network

Task
Identification

Network

User

Microphone

Voice-Controlled
Robot

System

Voice-Controlled
Robot

System

Fig. 2. The architecture of the proposed voice-controlled robot
systems.

higher so that the particles are allowed to have much exploration
capability to aggressively search the solution space. Once the al-
gorithm is found to converge more and more towards the optimum,
this coarse tuning is gradually converted to a finer and finer tuning
by makingW smaller in later iterations. This provides the provision
of improving accuracy of the optimization algorithm. As opposed
to the proposal of incorporating inertia weights which only exer-
cise its influence over component I of the velocity update relation
in (1), constriction coefficients are employed to exercise wider con-
trol over each of the three major components of the velocity update
relation in (1), in an effort to prevent explosion of the system. The
proposed velocity update relation can be given as:

vjn(k + 1) = χ(vjn(k) + ϕ1(pjn(k) − xjn(k))

+ϕ2(pgn(k) − xjn(k))). (4)

It has been argued that there is no requirement of restricting veloc-
ity in any dimension for PSO employing constriction coefficient.
The constriction coefficient χ makes this requirement redundant.
However it has also been pointed out that employing constriction
coefficient with a liberal vn max equal to the dynamic range of the
variable may be quite useful [5].

3. Fuzzy Neural Network in Voice-Controlled Robot
Systems

The proposed voice-controlled robot system is shown in form of a
schematic diagram in Fig. 2. The system is composed of four ma-
jor building blocks: a speech recognizer (SR), a task identification
network (TIN), a performance evaluation network (PEN) and the
robot system under consideration. The input to the system appears
in form of spoken commands from a human. The entire system
is designed so that the linguistic nature of spoken directive of the
human user is translated in form of a quantified and crisp desired
action for the robot system. To start with, each and every running
utterance from an user is stripped off by a speech recognizer (SR)
module to create a pseudo sentence. Creating a pseudo sentence
from an user utterance implies that the in-vocabulary (IV) words
are segregated from out-of-vocabulary (OOV) words. For exam-
ple, if an user utters “Robot, can you move backward very slow”,
then the OOV words Robot, can and you are stripped off to create
the pseudo sentence “move backward very slow” comprising of IV
words. This pseudo sentence actually consists of the meaningful
semantic action along with its linguistic adjective for the robot to
perform its action. Spotting of proper IV words in a running ut-
terance is achieved by training a left-to-right category of Hidden
Markov Models (HMMs) [8],[9]. The construction of this pseudo
sentence is achieved by using the HMM Toolkit (HTK) distributed
as a freeware in the web by Speech Vision and Robotics Group of
the Engineering Department, Cambridge University. This speech

recognizer employs phoneme based recognition of IV words where
the phonemes of each IV word are designed as tri-state left-to-right
HMM models. The strength of a keyword recognizing module de-
pends on how intelligently the IV words can be recognized and it
requires efficient training of the HMM based speech recognizer.
Special attention has been provided to identify similar actions with
synonyms. Initially HMMs are trained so that they can identify iso-
lated words and later they are added together to build the database
for the SR.

Once the pseudo sentence is constructed, it comprises of two parts:
each definite task/action along with the evaluation of perform-
ing that task. For example, in the pseudo sentence “move back-

ward very slow”, the task/action part is “move backward” and the
evaluation of performance is “very slow”. The selection of the task
part comprises of the qualitative nature of the job and performance
evaluation part is executed to determine the quantitative, crisp out-
put signal to be generated by the network for the robot system, for
that given task as commanded by the user. For selection of the spe-
cific action, the pseudo sentence is fed to a single layer perceptron
based artificial neural network (ANN). Here each output node char-
acterizes the presence of a specific IV word in the pseudo sentence
by generating a high output. Each output node employs a hard lim-
iting characteristic function and the ANN is overtrained to specifi-
cally identify the set of IV words. For a set ofM IV words with P
distinct tasks the ANN employsM input nodes andP output nodes.
Normally P ≤M to take care of different words with similar tasks
i.e. synonyms in user utterance.

Once the task identification ANN identifies the exact linguistic na-
ture of the task assigned, it becomes very important to determine
the quantitative degree of severity with which the task has to be per-
formed. This very important part of the total system is implemented
with the help of the performance evaluation network (PEN). This
PEN is implemented with the TS-type FNN which is trained with
the help of PSO. This FNN-based PEN is employed to acquire fuzzy
linguistic information from the domain expert to train the architec-
ture so that it can produce precise, quantitative control signal for the
robot system as an output, based on the user command. The FNN-
based PEN utilizes both the linguistic task identification and perfor-
mance evaluation clauses in the pseudo sentence as its one input.
For example in the pseudo sentence “move backward very slow”,
the linguistic task identification clause “move backward” is associ-
ated with a fuzzy predicate (FP) symbolizing the performance eval-
uation clause “very slow”. Each linguistic task identification input
is associated with an FP which is characterized as a singleton. Each
FP belongs to a global FP database for all actions. One sample FP
database can be {very slow, slow, carry on, fast, very fast}.
The other input of the FNN corresponds to the current quantitative
value of the tth task selected from TIN. The architecture of the FNN
is shown in Fig. 3.

3.1. Architecture of the TS-type FNN

The first three layers of this six-layered FNN correspond to the an-
tecedent parts and the last two layers of the FNN correspond to the
consequence parts of the fuzzy reasoning. As shown in Fig. 1, the
domain of discourse of task 1 is described by fuzzy variableA1 with
q number of linguistic values and the same of action N is described
by fuzzy variable AN with t number of linguistic values. Similarly,
the FPs associated with task 1, FP 1s, consist of r number of FPs

Ntaskw _

Command

1 2 3 4 5 6
Antecedent Consequence

Σ g

Π

Π

Π

Π

Π

Π

Current
Value of
Task 1

*task 1_

1_taskw

Σ

Π Π

Σ g

Π

Π

Π

Π

Π

Π

Σ *Ntask _

1N
h

Π Π

Current
Value of
Task N

Σ g

tN
h

)1(−tsN
h

stN
h

Σ

N
1FP

qr
h1

)1(1 −rq
h

11
h

r
h1

N
sFP

Nµ
1A

N
t

µA

g

1
1FP

1FPr

1Aq
µ

1
1A

µ

*task 2_

Fig. 3. The FNN employed as the performance evaluation network.

and those of FPN s consist of s number of FPs. Thus, each action is
unique in the sense of domain of discourse and FPs associated with
that particular action. We employ the notations ul

i and Ol
i as the

input to the ith node of lth layer and the output from the ith node of
lth layer respectively.

3.1.1 Layer 1: Input layer

Layer 1 consists of two types of nodes: 1) a command node to
represent the availability of FPs in the pseudo sentence and 2) nor-
mal input nodes for different tasks of the machine which also corre-
spond to the current physical output measured from the robot sys-
tems. Each task is labeled as, Current Value of Task i , where
i = 1, · · · ,K. The current value of task i, i.e., the crisp input to the
ith task node is denoted as xi. The nodes in this layer receive the
current values of all machine tasks and FPs of the pseudo sentence
and transmit them to the next layer directly. Hence the input-output
relation of this layer is given by:

O1
i = u1

i = xi. (5)

3.1.2 Layer 2: Membership function layer

Layer 2 acts as the fuzzification layer of the FNN where the values
of the activated fuzzy membership functions (MFs) for a given cur-
rent value of task i are calculated. Let us consider that the current
value of the ith task xi has activated the vth linguistic value or MF,
Ai

v, of the linguistic variable Ai associated with task i. Then the
input-output relation of this layer, for these nodes, is given by:

O2
iv = f(O1

i) = f(u1
i) = µAi

v

(
u1

i

)
= µAi

v
(xi) . (6)

The outputs of the FP nodes are activated like fuzzy singletons. An
FP node connected to a command node will produce an output of 1
if the FP exists in the pseudo sentence. Let the vth FP for the ith
task activated by the pseudo sentence be denoted by FP i

v. Then the
output from such a node can be obtained as:

O2
ij = f(u1

i) = f(FP i
v) =

{
1 if FP exists in the command
0 otherwise.

(7)

3.1.3 Layer 3: Rule layer

The rule layer employs AND operation, in form of algebraic prod-
uct, to calculate the T-norm of the antecedent part. This layer es-
sentially computes the strength with which each rule can be fired or
activated. Computation of the T-norm employing algebraic product
ensures that only those rules which contain fuzzy predicates in the
pseudo sentence will be activated. These rule values, which rep-
resent the user request and the current status of the machine, are
exploited in layer 5 for normalization purpose. The output of the
rth rule for the ith task from this layer is obtained as:

O3
ir = hir = µAi

p
(xi) ∗ FP i

q (8)

where hir represents the firing strength of the rth rule of the ith
task. The total number of rules that can be activated associated
with this task is R where R = P ×Q. Here P and Q are the total
number of MFs of the linguistic variable and the total number of
fuzzy predicates associated with the ith task.

3.1.4 Layer 4: Intermediate computation layer

The first node of layer 4 of each FNN, assigned for each specific
task, performs an integration function followed by an inverse func-
tion. This is shown by the symbols

∑
and g respectively. The

output from this node of layer 4, for task i, can be obtained as:

O4
i1 = g(z) =

1

z
(9)

where z is obtained as:

z =
1

R∑
r=1

u4
ir

=
1

R∑
r=1

hir

. (10)

Outputs from the other nodesm in this layer, for task i, are obtained
as:

O4
im = u4

im. (11)

3.1.5 Layer 5: Normalization layer

This layer performs the normalization function for the crisp values
of the activated output rules. The output from each mth node in
each FNN, i.e. for the task i, in this layer is obtained by multiplying
the input for themth node and the output of the first node from layer
4, for the task i. Then the output of anymth node of this layer can
be given by:

O5
im = u5

im ∗ O4
i1 =

him

R∑
r=1

hir

. (12)

3.1.6 Layer 6: Defuzzification layer

Layer 6 is the defuzzification layer of the FNN. Each output node
in this layer performs defuzzification to generate final, crisp output
for each specific action, by taking weighted average of all its inputs.
The final output is dependent on the inputs as well as the connecting
weights between the inputs and the output. The overall output, i.e.,
the quantitative evaluated performance value for the ith desired task
is given as:

O6
i = task i∗ =

R∑
r=1

hirwir

R∑
r=1

hir

. (13)

Here wir denotes the connecting weight for the rule r to perform
the desired task i, i.e., firing strength of the rule r.
3.2. Training of the TS-type FNN employing PSO
The training algorithm of the TS-type FNN based PEN is shown
in Fig. 4. Here the PSO algorithm has been employed to train the
weights wir in the defuzzification layer i.e. layer 6 of the FNN ar-
chitecture. The PSO problem has been defined as anN -dimensional
problem whereN is the total number of output weights in the FNN-
based PEN. Our objective is to train the output weights of the FNN
so that the PEN can produce desired crisp output control signal ac-
cording to the pseudo sentence derived from the spoken directive
from the user and the current state of the robot task. The FNN is
trained in batch mode with a training dataset of I data pairs. The
problem is formulated as a minimization problem where the fitness
function is based on the mean-squared-error (MSE) of the FNN in
each iteration, given as:

MSE =
1

I

I∑
i=1

(ydi − yai)
2. (14)

Here ydi is the desired output and yai is the actual output from
the FNN for the task i in the training phase. The desired output is
obtained from a knowledge base, created using the knowledge of
the domain expert for that specific robot system problem domain.
All the training data pairs are created by employing completely ran-
domly chosen numbers for each input. Then, we choose a possi-
ble size of population S which gives us a possible set of weight
vectors {w1 w2 · · · wS}. Each weight vector wj is a poten-
tial particle for the PSO algorithm and is an R × 1 vector where
R is the total number of output weights in the FNN. Hence wj =
[wj1 wj1 · · · wjR] where R = P × Q. To start with, all the
weights in each weight vector wj are randomly initialized in a dis-
course of [wleft, wright]. Then the FNN is fed with it’s dataset in
batch mode with each possible potential solution (i.e. weight vec-
tor wj) and error is calculated for each data pair in the dataset.
When the entire dataset is presented to FNN for once, we calculate
MSE of the system, for the given wj . In this process we evaluate
the performance of the FNN for the entire dataset for each possible
weight vector wj . If, in each case, it does not meet the termina-
tion criterion, i.e. it is not lower than the maximum permissible
MSE,MSEmax , then it can be concluded that none of the possible
particles i.e. weight vectors, can give satisfactory solution and that
completes one iteration of the optimization process. Then, in next
iteration, position coordinates of each of these particles, i.e. nu-
merical values of each component weight in each possible weight
vector, are updated according to the PSO algorithm. At the end of
the kth iteration, the nth dimension i.e. the nth component weight
wjn in the jth particle, i.e. the possible weight vectorwj is updated
according to the formulae,

ẇjn(k + 1) = W (k + 1)ẇjn(k) + ϕ1(pjn(k) − wjn(k))

+ϕ2(pgn(k) − wjn(k)) (15)

and
wjn(k + 1) = wjn(k) + ẇjn(k + 1). (16)

In our version of the PSO we have employed a linearly adaptable
inertia weightW which starts with a high valueWhigh and linearly

Initialize S weight vectors wj

Evaluate MSE of FNN for the entire dataset with a given wj

Is MSE < MSEmax? stop
yes

no

Increase n by 1 until n = N

Increase j by 1

j >S ?

yes

no

Start new iteration with j = 1

jnjn ww andofvalues the Update &

Fig. 4. The training of the FNN employing PSO.

decreases toWlow at the end of the maximum number of iterations,
i.e. itermax , if the algorithm continues till the end without meeting
the termination criterion. Hence inertia weight for the (k + 1)th
iteration is computed as:

W (k + 1) = Wlow +
(
Whigh −Wlow

itermax

)
(itermax − (k + 1)) .

(17)
If the optimization routine converges successfully before itermax

is reached, then definitely W will end up with a value higher than
Wlow. For each dimension we can choose different discourse ofW
i.e. [Whigh, Wlow], if we wish so. Similarly the maximum permis-
sible velocity of each particle i.e. the maximum permissible rate
of change of each weight, ẇmax, can also be accordingly chosen
independent of each other.

One of the significant features of building the knowledge base
from the domain expert and utilizing it in the training phase of the
FNN is the contextual meaning of each word spoken by the user.
The importance of each linguistic information in the pseudo sen-
tence is fuzzily converted in the context of the present situation of
the robot system and the new control signal is accordingly gener-
ated. For example let us consider the pseudo sentence “move for-
ward very slow”. Then if the robot is already moving forward with
its velocity very near its minimum velocity, the importance of the
new linguistic directive “very slow” will be at its lowest and the
decremental change in velocity will also be smallest. However,
if the robot is already moving forward with its velocity very near
its maximum velocity, then this linguistic directive will attain its
maximum importance and the decremental change in velocity will
achieve its greatest value.

4. Motion Control of a Redundant Manipulator
A real life experimental case study was conductedto control the mo-
tion of a seven degrees-of-freedom (DOF) redundant manipulator
employed to perform a real assembly task. Figure 5 shows the lay-
out of this assembling task undertaken. They are mainly employed
to perform tasks that are considered difficult or impossible for reg-
ular manipulators, e.g. tracking a desired trajectory in presence of
obstacles and/or minimizing a performance objective, defined as a

Fig. 5. The layout of the assembly task for PA 10.

function of motion [11],[12]. The redundant manipulator employed
in our experiment is the PA-10 portable general purpose arm, from
Mitsubishi. Our system employs Via Voice SDK, supplied by IBM,
to develop the automatic speech recognizer (ASR) [13]. Here the
grammar for identifying words is defined with the help of SRAPI
recognition control language (SRCL) syntax in plain-text Backus
Naur Form (BNF). The entire pool of IV words is developed by
considering three sub-pool of IV words, dedicated for three specific
operations: 1) to manipulate the gripper tool, 2) to rotate the wrist
clockwise and anticlockwise and 3) to control the traversal of the
end effector in a three-dimensional space. The SR is trained for this
entire pool of IV words by pronouncing each word separately so
that these words get added to the existing pronunciation pool of the
ASR.

Here the input fuzzy variable for the FNN-based PEN, which is
identical with the output sensed from the redundant manipulator, is
taken as linear distance. This is required for training the FNN to
achieve desired traversal of Euclidean distance by PA 10 for pre-
cise target positioning. The target position is described with the
help of the three-dimensional Cartesian coordinate system. Figure
6 shows the three MFs chosen for this fuzzy variable, input dis-
tance. We chose four fuzzy singletons for this variable. Hence,
the defuzzification layer for the FNN contains 12 output weights
which are trained by employing PSO in the training phase. Hence
the PSO problem is formulated as the minimization of MSE prob-
lem with 12 dimensions. The free parameters of the PSO are chosen
as Whigh = 0.2, Wlow = −0.3 and ẇmax = 0.1 for each of the 12
dimensions. Initially all particles in each dimension i.e. all the pos-
sible weight values are initialized in the domain [0, 1]. Here also we
tried to solve the PSO problem with three possible population sizes,
i.e. 20, 30 and 40. Figure 7 shows the training performance of
each of these PSO algorithms. Here PSO showed satisfactory con-
vergence phenomenon when the population size was chosen as 40.
For smaller population size, the performance in the training phase
of the FNN-based PEN was found unsatisfactory. We implemented
the real life FNN-based PEN utilizing the output weights trained by
the PSO, employed with 40 particles. During the training process of
the FNN, the knowledge base designed according to the knowledge
acquired from the domain expert is given in tabular form in Table 1.

Figure 8 shows the results obtained in assembling a bolt to a nut,
using PA 10, which were shown in the experimental setup in Fig.
5. The spoken language directives employed by the user, required
for successful completion of this task, along with the corresponding
tip positions of the manipulator in three-dimensional Cartesian co-

0 10 20 30 40 50 60 70 80 90 100
0

1

Low Medium High

M
em

be
rs

hi
p

va
lu

e

Input distance])m[10(3−×x

Fig. 6. Membership functions of input distance for PA 10.

� �� �� �� �� ��
�

���

���

���

,WHUDWLRQV

0
HD
Q
VT
X
D
UH

HU
UR
U
0
6
(

6 ��

6 ��

6 ��

Fig. 7. The training performance of PSO for PA 10.

ordinate system are shown in Table 2. A successful completion of
the specified job demonstrates the efficacy of the FNN based PEN
employed for smooth controlling of motion of the PA 10 arm along
with its end effector.

5. Conclusions
The present work has demonstrated the feasibility of employing par-
ticle swarm optimization (PSO) techniques for efficient training of
a fuzzy-neural network (FNN). The PSO trained FNN has been suc-
cessfully employed as an important building block in real life voice-
controlled robot systems. When properly trained by PSO, the FNN
can perform accurate controlling of the robot behavior on the basis
of fuzzy linguistic commands issued by an user, in form of natural,
spoken language based running utterances. The system has been
developed so that it is sensitive to the context of the spoken lan-
guage based directive from the user, when observed from the per-
spective of the present performance of the robot. The system has

0
250

500
750

10000 100 200 300 400 500

200

400

600

800

1000

1200

1400

x position [mm]

y position [mm]

Start point

z
po

si
tio

n
[m

m
]

Bolt
Nut

Fig. 8. The profile of the end-effector of PA 10.

Table 1. The knowledge base of the desired distance traversal for
PA 10

Low Medium High

A very little 4.0 + 0.1 × x 4.0 + 0.05 × x 0.1 × x

A little bit 10.0 + 0.1 × x 10.0 + 0.05 × x 0.2 × x

Carry on 0.95 × x 0.95 × x 0.85 × x

A far 40.0 + 1.1 × x 10.0 + 1.1 × x 1.1 × x

Table 2. Task related information and corresponding tip positions
of the PA 10 manipulator

Task information x y z

move to start position 657.97 0.06 374.57

move a far up 657.94 0.14 460.82

carry on, carry on 657.92 0.13 548.14

repeat again 658.06 0.14 635.42

proceed to far left 658.03 87.14 635.46

carry on, carry on 658.04 174.00 635.43

go a far left 658.02 261.06 635.40

come forward 722.01 261.07 635.46

go a very little back 718.30 261.07 635.44

move a very little back 714.35 261.06 635.47

been successfully employed to control the motion of a redundant
manipulator for an assembly task, also performed in real life.

References
[1] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,”

in Proc. 1999 Congr. Evolutionary Computation, IEEE Service Center, Piscat-

away, NJ, 1999, pp. 1945–1950.

[2] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors

in particle swarm optimization,” in Proc. 2000 Congr. Evolutionary Computa-

tion, San Diego, CA, July 2000, pp. 84–88.

[3] J. Kennedy, “The particle swarm: Social adaptation of knowledge,” in Proc.

1997 Int. Conf. Evolutionary Computation, Indianapolis, IN, April 1997,

pp. 303–308.

[4] P. Angeline, “Evolutionary optimization versus particle swarm optimization:

Philosophy and performance differences,” in Evolutionary Programming VII,

V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds. Berlin, Germany:

Springer-Verlag, 1998, pp. 601–610.

[5] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and conver-

gence in a multidimensional complex space,” IEEE Trans. Evolutionary Com-

putation, vol. 6, no. 1, pp. 58–73, Feb. 2002.

[6] A. Conradie, I. Nieuwoudt, and C. Aldrich, “Nonlinear neurocontroller devel-

opment with evolutionary reinforcement learning,” in 9th National Meeting of

SAIChe, Secunda, South Africa, 2000.

[7] A. Conradie, R. Miikkulainen, and C. Aldrich, “Adaptivecontrol utilising neural

swarming,” in Proc. Genetic and Evolutionary Computation Conference, New

York, USA, 2002.

[8] L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov models,”

IEEE ASSP Magazine, vol. 3, pp. 4–16, Jan. 1986.

[9] R. C. Rose and D. B. Paul, “A hidden Markov model based keywordrecognition

system,” in Proc. IEEE ICASSP ’90, 1990, pp. 129–132.

[10] K. Pulasinghe, K. Watanabe, K. Kiguchi, and K. Izumi, “Modular fuzzy neuro

controller driven by voice commands,” in Proc. ICCAS 2001, 2001, pp. 194–

197.

[11] M. C. Ramos, Jr. and A. J. Koivo, “Fuzzy logic-based optimization for redun-

dant manipulators,” IEEE Trans. Fuzzy Systems, vol. 10, no. 4, pp. 498–509,

Aug. 2002.

[12] Y. Nakamura and H. Hanafusa, “Optimal redundancy control of robot manipu-

lators,” Int. J. Robot. Res., vol. 6, no. 1, pp. 32–42, 1987.

[13] IBM(R) ViaVoice(tm) SDK, “SMAPI Developer’s Guide March 2001,” Inter-

national Business Machines Corporation, USA, 1999–2001.

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 1115
	page21: 1116
	page31: 1117
	page41: 1118
	page51: 1119
	page61: 1120

