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TRANSFORMER MODELLING FOR STUDYING THE PROPAGATION OF PARTIAL
DISCHARGE PULSES

S. N. Hettiwatte, Z. D. Wang and P. A. Crossley

UMIST, UK

ABSTRACT

A computer model developed for studying the propagation of partial discharge (PD) pulses in a continuous disc type 6.6
kV transformer winding is described in the paper. The winding model takes the turn as the basis for the analysis and
uses multi-conductor transmission line theory to obtain a system of equations to calculate the voltage and current along
the winding. Capacitance, inductance, resistance and conductance are calculated as distributed parameters for the
winding model. Transfer functions that can be used to study the effect on the PD current as the monitoring point moves
from the location of the PD to the line-end and the neutral-end are calculated. The transfer functions represent the
frequency response of the signals measured at the line and neutral-end terminals for a PD pulse represented by a Dirac
delta function at the point of discharge. The zeros of the transfer functions convey information about the position of the
discharge and hence can be used for its location.

INTRODUCTION

A partial discharge (PD) is defined as a localised
electrical discharge that only partially bridges the
insulation between conductors and which may, or may
not, occur adjacent to a conductor [1]. Partial discharges
are steep fronted pulses having duration from fractions
of nano-seconds (ns) to a few microseconds (µs). The
frequency spectra of such PD pulses can extend beyond
1 GHz. Ideally, to study all types of PD propagation
through a transformer winding, one has to accurately
model the winding from a few hundred kHz to a few
GHz. Such an ultra wide band circuit is difficult to
simulate. Hence, a compromise solution is required and
this involves the design of a model suitable for
frequencies from a few hundred kHz to a few tens of
MHz. Such a model is suitable for representing the
effect on a PD pulse (duration 100 ns ~ 10 µs) of
propagating along the transformer winding.

Previous research [2] has shown that a lumped element
representation of each disc in a transformer winding is
valid for frequencies up to a few hundred kHz.
However, electromagnetic (EM) wave propagation in
the winding at higher frequencies requires more
resolution. Hence, each turn of the winding is taken as a
lumped element and multi-conductor transmission line
(MTL) theory is then used to represent the complete
winding [3].

The capacitance, inductance, resistance and
conductance values are calculated per turn as the inputs.
These parameter values consist of matrices with
dimensions equal to the number of turns in the winding.
Transfer functions that describe the effect on the PD
current in moving from the source of the discharge to
the line-end and the neutral-end of the winding are used
in the PD propagation studies [2]. A simulation program

developed in Matlab Version 5.3 (R11) was used to
calculate these transfer functions. The simulation results
show that the zeros in the transfer functions contain
information about the location of discharge [2].

THE MULTI-CONDUCTOR WINDING MODEL

MTL theory is applicable to a set of conductors in an
EM field provided that the wave propagation is
transverse electromagnetic (TEM) [4]. When the
wavelength of propagation (λ) is very large compared
with the cross-sectional dimensions of conductors, as is
the case in this study, the wave propagation is usually
by TEM mode and hence MTL theory can be applied.
Figure 1 shows the representation of a winding using a
MTL model.

The voltage (V) and the current (I) distributions in such
a system can be derived from the wave equations (1)
and (2), where [Z] and [Y] are impedance and
admittance matrices of the line respectively, and [P]2 =
[Z][Y], [Pt]

2
 = [Y][Z].
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Equation (1) and (2) can be solved to give
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where V1 and V2 are constants to be determined by the
terminal conditions, [YO] = [Z]-1[P] = [Y][P]-1 is the
characteristic admittance of the network and x is the
distance measured from the sending end of the
transmission lines.

Figure 1 Multi-conductor transmission line model

If terminal conditions are applied to Equation (3) and
(4) for x=0 and x=l, where l is the average length of a
transmission line, it will lead to

(5d)                                         )(

(5c)                                                

(5b)                                                         )(

(5a)                                                                 

][
2

][
1

][
2

][
1

21

21

lPlP
OR

lPlP
R

OS

S

eVeVYI

eVeVV

VVYI

VVV

−=

+=

−=
+=

−

−

where sending end quantities are denoted by the
subscript ‘S’ and the receiving end quantities by ‘R’.
Equation (5a), (5b), (5c) and (5d) can be used to express
IS and IR in terms of VS and VR.
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Equation (6) has exponentials of matrix [P], which can
be calculated by diagonalising [P]. If [P] has eigen
vectors [Q] and eigen values [γ], [P] can be written as
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From Equations (6) and (7) it is possible to derive
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where [A] = [Y][Q][γ]-1coth([γ]l)[Q]-1 and [B] =
[Y][Q][γ]-1cosech([γ]l)[Q]-1 are n × n matrices, and n is
the number of conductors in the model. IS, IR, VS and VR

are vector quantities representing the values in Figure 1.
The transmission line model in Figure 1 has terminal
conditions:
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With this set of terminal conditions applied to Equation
(8), it is possible to do two types of reduction [3]:

(i) With Equation (9), adding rows of the matrix
in Equation (8), all the currents can be
discarded except IS(1) and IR(n).

(ii) With Equation (10), adding columns of the
matrix in Equation (8), all receiving end
voltages, except VR(n) can be discarded.

With these reductions Equation (8) becomes
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where [Y] is a (n+1) × (n+1) matrix.

PD injection
If a PD current pulse IPD is injected into the kth turn of
the winding, Equation (9) is modified when i = k-1:
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All other rows in Equation (9) remain unchanged. If this
change is incorporated into Equation (11), only the
current vector in row k is modified. The new equation is
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If matrix [Y] is inverted and re-arranged, it is possible
to get Equation (14).

Hence, if the line-end voltages, the neutral-end currents
and the PD current are known all other voltages and
currents can be calculated.
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If the bushing capacitance CB represents a boundary
condition at the line-end, then

(15)                                                  )1()1( SBS VCjI ω−=

If the neutral-end is at earth potential, the boundary
condition at the neutral-end will be
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With these boundary conditions, the transfer function
from the PD source current to the line-end current (TFL)
is
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where N=n+1. Similarly, the transfer function from the
PD source current to the neutral-end current (TFN) is
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CALCULATION OF ELECTRICAL
PARAMETERS

The physical dimensions of a transformer winding and
the permittivity of the insulation are used to construct
this 22-section × 13-turn, continuous type winding. The
impedance and admittance matrices in Equation (1) and
(2) are calculated using:
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where RS = resistance, [L] = inductance matrix, [G] =
conductance matrix, [C] = capacitance matrix, [In] =
unit matrix and f is the frequency.

Capacitance
Capacitance and inductance are the most important
parameters since they play a major role in the accuracy
of this model. The capacitive elements are the most
straightforward to evaluate since they only involve
calculations based on geometry and permittivity of
insulation. In capacitance calculations there are three
components to be considered: inter-turn capacitance
(CIT), inter-section capacitance (CID) and capacitance

to the low voltage winding (CLV). CIT is calculated
assuming two adjacent turns of the winding form a
parallel plate capacitor. This assumption is also used in
the calculation of CID. Greater accuracy in the
calculation of CID requires a model that incorporate
inter-turn cross capacitance [5]. Formula for the
capacitance between two coaxial cylinders is used in the
calculation of CLV.

Inductance
When evaluating the inductance it is assumed that
magnetic flux penetration into the laminated iron core is
negligible at frequencies above 1 MHz [6]. The
inductance can be calculated by assuming the winding
consists of loss-less multi-conductor transmission lines
surrounded by a homogeneous insulator, hence [4]
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where µ and ε are the permeability and permittivity of
the insulation and In is the unit matrix. If no high
frequency magnetic flux penetrates the iron core, the
winding can be regarded as a conductor in free space
surrounded by insulation. The inductance due to the flux
external to the conductor can be calculated using [7]
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where [Cn] = capacitance without insulation, εr =
relative permittivity of insulation and c = velocity of
light in free space. At high frequencies, the flux internal
to the conductor also creates an inductance [4]
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where RS is the resistance due to the skin effect and f is
the frequency. The inductance matrix is given by
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Resistance
In resistance calculation, the skin effect at high
frequencies is taken into account. The resistance per
unit length of conductor is given by
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where d1, d2 = cross-sectional dimensions of rectangular
conductor, µ = permeability of conductor, σ =
conductivity and f = frequency.

Conductance
The conductance is due to the capacitive loss in the
insulation. It depends upon the frequency f, the
capacitance C and the dissipation factor tan δ.



(26)                                                  tan][2][ δπ CfG =

The tan δ for the Nomex paper insulation used in this
transformer satisfies [8]

(27)                          
7

6
107.0tan )10308.0( 6







 −=

−×− feδ

Hence

(28)                     
7

6
1][44.0][ )10308.0( 6







 −=

−×− feCfG

SIMULATION RESULTS

The parameters calculated in the previous section are
used to determine the transfer functions TFL and TFN.
The PD current pulses were injected into various turns
on the winding. The results are shown in Figure 2 and
Figure 3 for f < 2000 kHz.

Figure 2 – Magnitude of TFL (1 kHz ~ 2000 kHz)

Figure 2 shows the transfer functions from the source of
the discharge to the line-end (TFL). PD current pulses
were injected at turns 26, 52, 78, 104, 130, 156, 182,
208, 234 and 260 on the winding. Note that these turn

numbers are multiples of 26 since each double section
has 13×2=26 turns. It is clear from Figure 2 and Table 1
that as the turn number increases the frequency of zeros
(minima) increases in value. The frequencies of poles
(maxima) are unaffected.

Figure 3 shows the transfer functions from the source of
the discharge to the neutral-end (TFN). The frequency of
the zeros decrease in value as turn number increases. As
in previous case, frequencies of poles are unaffected.
Table 2 gives pole-zero positions.

Figure 3 – Magnitude of TFN (1 kHz ~ 2000 kHz)

CONCLUSION

In a continuous disc type transformer winding, the
frequency of zeros in transfer functions from the source
of discharge to the line-end and the neutral-end
increases in frequency as the discharge source moves
away from the measuring terminal and hence verifies
previous research on PD location using this approach.
The frequency of the first zero is a good indicator of the
discharge position along the winding and hence can be
used for PD location. The frequency of poles only gives
local oscillations for the winding and are unaffected by
PD.
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Table 1 Pole – zero positions (kHz) of transfer functions TFL (f =1 kHz ~ 2000 kHz)
PD (turn
no.)

p1 p2 z1 p3 z2 p4 z3 p5 z4 P6 z5 p7 z6 p8

26 70 271 275 508 520 753 765 1005 1020 1265 1280 1534 1552 1813
52 70 271 295 508 542 753 784 1005 1030 1265 1280 1534 1542 1813
78 70 271 321 508 572 753 792 1005 996 1265 1242 1534 1510 1813
104 70 271 358 508 624 753 730 1005 954 1265 1248 1534 1550 1813
130 70 271 419 508 975 753 1298 1005 1585 1265 1793 1534 - 1813
156 70 271 646 508 1036 753 1355 1005 1454 1265 1790 1534 - 1813
182 70 271 729 508 1488 753 1930 1005 - 1265 - 1534 - 1813
208 70 271 848 508 1120 753 1670 1005 1758 1265 - 1534 - 1813
234 70 271 1360 508 1735 753 - 1005 - 1265 - 1534 - 1813
260 70 271 - 508 - 753 - 1005 - 1265 - 1534 - 1813

Table 2 Pole – zero positions (kHz) of transfer functions TFN (f =1 kHz ~ 2000 kHz)
PD (turn
no.)

p1 p2 z1 p3 z2 p4 z3 p5 z4 P6 z5 p7 z6 p8

26 70 271 244 508 - 753 - 1005 - 1265 - 1534 - 1813
52 70 271 172 508 1375 753 1505 1005 1755 1265 - 1534 - 1813
78 70 271 141 508 860 753 1050 1005 1150 1265 - 1534 - 1813
104 70 271 122 508 736 753 1496 1005 1945 1265 - 1534 - 1813
130 70 271 109 508 654 753 1045 1005 1354 1265 1450 1534 1795 1813
156 70 271 99 508 432 753 981 1005 1304 1265 1585 1534 1785 1813
182 70 271 91 508 369 753 634 1005 716 1265 951 1534 1250 1813
208 70 271 84 508 332 753 578 1005 792 1265 991 1534 1240 1813
234 70 271 79 508 306 753 546 1005 786 1265 1030 1534 1280 1813
260 70 271 74 508 287 753 524 1005 768 1265 1020 1534 1282 1813
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