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ABSTRACT  

In this paper an Euclidean Geometric proof is 
presented for the Ptolemy’s Theorem of cyclic 
quadrilaterals by using a generalized identity with 
respect to a cevian of a triangle. Furthermore, a 
proof for the converse of the Ptolemy’s Theorem 
is also presented, while adducing some significant 
applications, new corollaries and lemmas of Ptole-
my’s Theorem and its converse.

INTRODUCTION

The Ptolemy’s Theorem of Cyclic Quadrilaterals 
founded and proved by Claudius Ptolemaeus who 
was an eminent Greek Mathematician, has been 
one of the prominent and exciting results in a ge-
ometry of a circle, throughout way back centuries 
ago, even at present not only in Advanced Geom-
etry, but also in the other related sciences. There 
have been several alternative proofs for the Ptole-
my’s Theorem of cyclic quadrilaterals in the math-
ematics literature, using some geometric, trigo-
nometric and non-geometric (Complex Number 
Algebra, Vector Algebra) approaches. The author 
himself has published a concise elementary proof 
for the Ptolemy’s Theorem using only the Euclide-
an Geometry (without using trigonometry), prov-
ing some other useful properties in a cyclic quad-
rilateral in [1] in the references. In this paper, the 
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author adduces an alternative proof for the Ptole-
my’s Theorem of cyclic

 quadrilaterals, involving a generalized corollary 
proved with respect to a cevian of a triangle, as 
well as for the converse of the Ptolemy’s Theorem 
involving Mathematical Logic. 

1.	 MATERIALS AND METHODS

Corollary 1

Let ABC∆ be an arbitrary plane triangle such 

that D  be an arbitrary point on BC , with

BC a= , AC b=  and AB c= . If AD  is a ce-

vian such that 
1BD

DC k
= for some 0k > , then 

( )( )
( )

2 2 2
2

2

1

1

k b kc a k
AD

k

+ + −
=

+
.

                   Figure 1. An Euclidean Triangle

Proof of corollary: The proof of the corollary is a 
conditional proof under proof by cases. For the 
sake of simplicity (or without loss of generality), 

assume that ABC∆ is an acute angle triangle.

Case 1. Assume that AD is not perpendicular to 

.BC

Proof:

Assume that AD is cevian such that 
1BD

DC k
= . 

Then draw the perpendicular AX  to BC . Thus 

0DX ≠ . Using the Pythagoras Theorem respec-

tively for ABD∆ (Obtuse Triangle), and ADC∆
(Acute Triangle), it follows that 

( )22 2 2 2 2 2 . c AD DX BD DX AD BD BD DX= − + + = + +

, and 

( )22 2 2 2 2 2 . b AD DX DC DX AD DC DC DX= − + − = + − .

These results lead us to 

2 2 2

2 2 2

1BD c AD BD
DC k AD DC b

− −
= =

+ −
 since 0k > and 

0DX ≠ .

Also, it is trivial to see that 
1

aBD
k

=
+

 

and 
1

kaDC
k

=
+

. Thus, it follows that 

2
2 2

2
2 2

1 1

1

ac AD
k

k kaAD b
k

 − −  + =
 + − + 

and after some elementary algebraic manip-
ulation, this leads us to the desired result

( )( )
( )

2 2 2
2

2

1

1

k b kc a k
AD

k

+ + −
=

+
.

Case 2. Assume that AD is perpendicular to .BC  

(Now X is coincided with D )

Proof: 

Then similarly, as before, using the Pythagoras 

Theorem, it follows 2 2 2 2 . c a b a DC= + − , as 

well as 2 2 2 2 . b a c a BD= + − . 

Thus, it leads to 
2 2 2

2 2 2

1BD a c b
DC k a b c

+ −
= =

+ −
.  Thus 

2 2 2

2 2 2

a b ck
a c b

+ −
=

+ −
. 
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Therefore 

2 2 2 2

2 2 2 2 2 2

2
1 1

a b c ak
a c b a c b

 + −
+ = + = + − + − 

. Also, it 

follows 
2 2 2

2
a c bBD

a
+ −

= .

Then observe that 

( )22 2 2 2 2 22 2 2
2 2 2 2

2

4

2 4

a c a c ba c bAD c BD c
a a

− + − + −
= − = − = 

 

.

Observe that 

2AD= .

Hence it follows that in each case, 

( )( )
( )

2 2 2
2

2

1

1

k b kc a k
AD

k

+ + −
=

+
. Now it is not 

difficult to deduce that, if ABC∆ is an obtuse tri-

angle then also
( )( )

( )

2 2 2
2

2

1
.

1

k b kc a k
AD

k

+ + −
=

+

2.	 RESULTS AND DISCUSSIONS

Theorem 1 (Ptolemy’s Theorem)

If ABCD is a cyclic quadrilateral such 

that AC and BD  are its diagonals then 

. . . AC BD AB DC AD BC= + . This is referred 
to as the Ptolemy’s Theorem of Cyclic Quadrilat-
erals.

Proof (New Proof). Assume that ABCD is a cy-

clic quadrilateral such that AC and BD  are its 

diagonals. Suppose AB a= BC b= , CD c=  

and AD d= . Let E  be the point of intersection 

of the diagonals AC and BD , and  let 
1BE

ED k
=  

and 
1AE

EC m
= for some constants , 0k m > .               

             Figure 2. A Cyclic Quadrilateral

Since  , and , ABE∆ and EDC∆  are similar. 

Hence 
BE a
EC c

= . 

Since  , and  , AED∆ and BEC∆  are similar. Hence 

AE ED d
BE EC b

= = . Thus 
BE AE a d
EC BE c b

     =     
     

 

which leads to 
1AE ad

EC bc m
= = . Hence 

bcm
ad

= .

Also, observe that 

BE a
EC c
ED d
EC b

   
   
   =
   
   
   

. Therefore, 
1BE ab

ED cd k
= =

. Hence 
cdk
ab

= . Then by using the above 

corollary on cevians to ABD∆ , we yield 

( )( )
( )

2 2 2
2

2

1

1

k d ka BD k
AE

k

+ + −
=

+
. Similar-

ly, by using the above corollary to BCD∆

( )( )
( )

( )
2 2 2 2 2 2 2

2 2 2
22 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2

2 2 22

2 2 2

2
1 4

41 2

a a b c a b cb c a
k b kc a k a c a c ba c b a c b a c b

ak a
a c b

      + − + −
+ −      + + − − + −+ − + − + −      = ==

+  
 + − 
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, we yield 
( )( )

( )

2 2 2
2

2

1

1

k c kb BD k
EC

k

+ + −
=

+. These two results lead to 

( )( )
( )( )

2 2 22

2 22 2 2

1 1
1

k d ka BD kAE
EC mk c kb BD k

+ + −
= =

+ + −. By simplifying, this leads to 

( ) ( )( )2 2 2 2 2 2 2 21 1BD k m k m d m a k c kb− = + + − −
. By substituting the above val-

ues for k and m , this leads to 

2 2 2
2 2 2 2 21 1

cd bc cd bc bc cd cdBD d a c b
ab ad ab ad ad ab ab

                 − = + + − −                                     . 

By simplifying we have 

( )( ) ( )( )( )2BD bc ad bc ad ab cd bd ac bc ad− + = + + −
. 

Case 1. Now assume that bc ad≠ . 

Then it easily follows 
( )( )

( )
2 ab cd ac bd

BD
ad bc

+ +
=

+
.

It is trivial to see that 
1

ACAE
m

=
+

 and 

1
mACEC
m

=
+

. Then observe that 

( )( )
( )

( )( )
( )

( )2 2 2 2 2 2 2 2 2 2
2 2

2 2

1 1

11 1

k d ka BD k k c kb BD k k a b d c
AE EC

kk k

 + + − + + − − + −
 − = − = =

++ +  

( )
( )

2 2 2 22 2 2
2 2

2

1 1
  = .

1 1 1 11

k a b d cAC mAC m mAC AC
m m k mm

 − + − − −     − = =       + + + +     + 

By substituting the above values for k and m , this 
leads to 

( )2 2 2 2

2

1
 =

1 1

bc cd a b d c
ad abAC
bc cd
ad ab

    − − + −        
    + +        

. Hence 
( ) ( )( )2 ad bc ac bd ad bc

AC
ad bc ab cd

− + −
=

+ +

. Since by our assumption, bc ad≠ , it easily fol-

lows that 
( )( )2 ad bc ac bd

AC
ab cd

+ +
=

+
.

Case 2. Now assume that bc ad= .

Then since 
bcm
ad

= , it follows 1m = . That is, 

then E  is the midpoint of AC .

Then by using the Apollonius Theorem for the

ADC∆ , it follows that 2 2 2 22 2AE ED d c+ = + . 

Observe that by the above-men-

tioned similar triangles
dED EC
b

 =  
 

, and 
1

mACEC
m

=
+

, it follows that 

. 
1 1

bc AC
mAC d d AC cdadED

bcm b b bc ad
ad

  
        = = =    + +      +    

. Moreover, 
1 1

AC AC ACadAE
bcm ad bc
ad

= = =
+ +  + 

 

.

Thus, by the above Apollonius Theorem, it follows 

that 
2 2

2 2. 
2 2

ACad AC cd d c
ad bc bc ad

   + = +   + +   
. By 

simplifying this further, since bc ad= , and rear-
ranging the terms, we yield to the desired result

( )( )2 ad bc ac bd
AC

ab cd
+ +

=
+

.
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Observe that 
cEC BE
a

 =  
 

. Since
1

BDBE
k

=
+

 , 

it follows 
1

BD cEC
k a

  =   +  
. Then from the above proved relation, we have 

( )( )
( ) ( )

22 2 2
2

2

1

11

k c kb BD k BDcEC
a kk

+ + −  
= =   ++  

. Substituting for k , we have

2 2 2
2 2

2 2
2

1

1 1

cd cd cdc b BD
ab ab abBD c

cd cda
ab ab

      + + −            =
   + +   
   

 

which leads to 
( )( )

( )
2 .

ab cd ac bd
BD

ad bc
+ +

=
+

That is in each case 
( )( )2 ad bc ac bd

AC
ab cd

+ +
=

+
 

and 
( )( )

( )
2 ab cd ac bd

BD
ad bc

+ +
=

+
. Hence, we yield

( )( ) ( )( )
( ) ( )22 2. 

ad bc ac bd ab cd ac bd
AC BD ac bd

ab cd ad bc
+ + + +

= × = +
+ +.

Hence it easily follows 

. . . AC BD AB DC AD BC= +  which is the Pto-
lemy’s Theorem of Cyclic Quadrilaterals. This com-
pletes the proposed alternative proof of Ptolemy’s 
Theorem.

Remark 1. It also follows that 
AC ad bc
BD ab cd

+
=

+
.

Lemma 1. Assume that ABCD is a cyclic quadri-

lateral such that AC and BD  are its diagonals, 

and  AB a= BC b= , CD c=  and AD d= . 
Then the intersection point E of the diagonals is 

the midpoint of AC if and only if bc ad= .

Proof of Lemma 1. Proof is trivial under the above 

case 2, if 1m = .

The Converse of the Ptolemy’s Theorem

Let , ,A B C and D be four arbitrary points in a 

plane. If . . . AC BD AB DC AD BC= +  such 

that AC and BD  are the diagonals of the quad-

rilateral ABCD , then the points , ,A B C and D  
are on a circle.

Proof. Proof is a proof by contraposition & proof 
by cases. Assume that at least one point of 

, ,A B C and D is not on a circle. Without loss of 

generality, assume that D is not on the circle.

             Figure 3. D is outside circle           Figure 4. D
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is inside circle                 Figure 5. D is inside ABC∆  

Case 1. Assume that D is outside the ABC∆ and 

the circumcircle of ABC∆  (figure 3).

Proof. Using the Ptolemy’s Theorem, it follows 
/ / /. . . AC BD AB D C AD BC= + . Since  is an 

obtuse angle, by the very elementary geometry, 

it is trivial to see that . Thus /AD AD> . Sim-

ilarly, it follows /CD CD> . Also, /BD BD>

. Therefore by writing / /BD BD DD= − , due 

to the arbitrariness of / 0DD > , it follows 

that . . . AC BD AB DC AD BC< + , that is 

. . . AC BD AB DC AD BC≠ + . Thus, by con-
traposition, the converse of the Ptolemy’s Theo-
rem is proved.

Case 2. Assume that D is outside the ABC∆ , but 

is inside the circumcircle of ABC∆ . (See figure 4)

Proof. Using the Ptolemy’s Theorem, it follows 
/ / /. . . AC BD AB D C AD BC= + . Similarly, as 

in case 1, by using the very elementary geome-

try, it follows that /AD AD< , /CD CD< and 
/BD BD< . In addition, / /BD BD DD= + . 

Due to the arbitrariness of / 0DD > , this leads 

us to . . . AC BD AB DC AD BC< + , that is, 

. . . AC BD AB DC AD BC≠ + . Thus, by con-
traposition, the converse of the Ptolemy’s Theo-
rem is proved.

Case 3. Assume that D is inside the ABC∆ , and 

inside the circumcircle of ABC∆ . (See figure 5)

Proof. Using the Ptolemy’s Theorem, it follows 
/ / /. . . AC BD AB D C AD BC= + . In this case 

it is possible that /AD AD= and /CD CD= , 

OR /AD AD< and /CD CD< , OR /AD AD>

and /CD CD> . But since /BD BD< , even if

/AD AD= and /CD CD= , it follows that 

. . . AC BD AB DC AD BC< + . In the rest of 

the cases, /AD AD≠ and /CD CD≠ , simi-
larly, as in the above case 2 and case 1, it fol-

lows that . . . AC BD AB DC AD BC≠ +
. Thus, in all possible cases, it follows that 

. . . AC BD AB DC AD BC≠ + . Thus, by con-
traposition, the converse of the Ptolemy’s Theo-
rem is proved.

Lemma 2. (Under the converse of Ptolemy’s The-
orem)

Let ABC∆ is an equilateral triangle in a plane. As-

sume that the point D is outside the ABC∆ be-

ing on the same plane such that AC and BD are 

the diagonals of the quadrilateral ABCD  with 

BD AD DC= + . Then the points , ,A B C and D
are on a circle.

Proof. Since ABC∆ is an equilateral triangle, 

it follows that AB BC AC= = . Also, since 

it is given that BD AD DC= + , it follows 

. . . AC BD BC AD AB DC= + . Hence, by the 
converse of the Ptolemy’s Theorem, it follows that 

the points , ,A B C and D are on a circle.

Remark 2. Observe that the converse of the above 
Lemma 2 is a very well-established result in circle 
geometry.

3.	 CONCLUSIONS

In this paper, the Ptolemy’s Theorem of Cyclic 
Quadrilaterals is proved by a different approach 
using a derived identity around a cevian of a trian-
gle. One may feel that since the author himself has 
already given a shorter proof of the same theorem 
in the literature (in [1]), it is redundant to pres-
ent another proof of it using a lengthier approach 
rather than his previous proof. But the readers 
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are encouraged to analyse the author’s novel ap-
proach of the proof of the Ptolemy’s Theorem pre-
sented here, as it leads to many other significant 
and important new corollaries and lemmas in be-
ing attempted to prove the Ptolemy’s Theorem in 
this way. Moreover, the converse of the Theorem 
is proved by using the contraposition and proof 
by cases is also important since it is hard to find 
complete proofs for the converse of the Ptolemy’s 
Theorem in an Euclidean Geometric way. 
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